Table 2. Selected bond distances (Å), bond angles (°),torsion angles (°) and hydrogen bonds

O(1)-C(9) N(1)-C(7) N(1)-C(8) N(1)-C(9) N(2)-C(14) N(2)-C(15) O(1)-C(2)	(I) 1.239 (4) 1 1.481 (4) 1 1.482 (5) 1 1.323 (4) 1 1.333 (6) 1 1.349 (5) 1 1.401 (9) 1	(II) •224 (5) •485 (5) •463 (5) •335 (5) •350 (7) •341 (6) •389 (8)	C(5)-C(C(6)-C(C(7)-C(C(9)-C(C(10)-C C(10)-C C(10)-C	(6) (7) (17) (10) C(11) C(15) C(12)	(I) 1.383 (7) 1.512 (6) 1.516 (7) 1.507 (4) 1.389 (5) 1.376 (5) 1.495 (6)	(II) 1.380 (6) 1.530 (6) 1.520 (6) 1.513 (5) 1.391 (6) 1.377 (5) 1.495 (7)
C(1)-C(6) C(2)-C(3) C(3)-C(4) C(4)-C(5)	1.373 (6) 1 1.334 (11) 1 1.337 (10) 1 1.391 (10) 1	·377 (6) ·380 (9) ·364 (9) ·384 (8)	C(11)-C C(13)-C C(15)-C	C(13) C(14) C(16)	1-398 (6) 1-356 (7) 1-490 (6)	1.387 (6) 1.351 (7) 1.495 (7)
$\begin{array}{l} C(7)-N(1)-C(8)\\ C(7)-N(1)-C(9)\\ C(8)-N(1)-C(9)\\ C(1)-N(2)-C(15)\\ C(2)-C(1)-C(6)\\ C(1)-C(2)-C(3)\\ C(2)-C(3)-C(4)-C(5)\\ C(3)-C(4)-C(5)\\ C(4)-C(5)-C(6)\\ C(1)-C(6)-C(7)\\ C(1)-C(6)-C(7)\\ N(1)-C(7)-C(6)\\ \end{array}$	(1) 116-9 (3) 119-1 (3) 123-6 (3) 120-6 (4) 120-1 (5) 121-8 (5) 121-8 (5) 121-8 (5) 118-3 (7) 119-7 (6) 117-5 (4) 113-5 (4) 111-0 (3)	(11) 117-7 (3) 118-1 (3) 123-6 (3) 122-6 (4) 120-7 (5) 120-0 (5) 120-0 (5) 120-5 (5) 121-7 (5) 118-1 (4) 122-0 (3) 119-8 (3) 110-9 (3)	N(1)-C(7) C(6)-C(7) O(1)-C(9) O(1)-C(9) O(1)-C(9) C(9)-C(11) C(9)-C(11)-C(C(10)-C(C(10)-C(C(12)-C(C(12)-C(N(2)-C(1 N(2)-C(1 N(2)-C(1 C(10)-C($\begin{array}{l}C(17) \\C(17) \\N(1) \\C(10) \\C(10) \\C(10) \\C(15) \\C(15) \\C(12) \\C(12) \\C(13) \\ $	$\begin{array}{c} (1)\\ 109\cdot 2 & (3)\\ 1109\cdot 2 & (3)\\ 115\cdot 8 & (3)\\ 124\cdot 0 & (3)\\ 116\cdot 6 & (3)\\ 119\cdot 3 & (3)\\ 119\cdot 1 & (3)\\ 119\cdot 1 & (3)\\ 120\cdot 9 & (3)\\ 121\cdot 4 & (4)\\ 120\cdot 7 & (4)\\ 118\cdot 2 & (4)\\ 120\cdot 7 & (4)\\ 117\cdot 4 & (4)\\ 124\cdot 4 & (4)\\ \end{array}$	$\begin{array}{c} (11)\\ 109\cdot1(4)\\ 109\cdot1(4)\\ 115\cdot6(3)\\ 124\cdot1(4)\\ 116\cdot9(3)\\ 119\cdot1(3)\\ 119\cdot5(3)\\ 120\cdot5(3)\\ 121\cdot5(3)\\ 121\cdot5(3)\\ 121\cdot5(3)\\ 121\cdot2(4)\\ 121\cdot2(5)\\ 118\cdot8(4)\\ 121\cdot2(5)\\ 119\cdot2(4)\\ 117\cdot0(4)\\ 124\cdot2(4)\end{array}$
$\begin{array}{c} C(9)-N(1)-C(7)-\\ C(9)-N(1)-C(7)-\\ C(7)-N(1)-C(9)-\\ C(8)-N(1)-C(9)-\\ C(8)-N(1)-C(9)-\\ C(1)-C(6)-C(7)-\\ O(1)-C(9)-C(10) \end{array}$	-C(6) -C(17) -O(1) -O(1) -C(10) -N(1) -C(15)	-13 9 17 -11	(I) 4-1 (3) 7-0 (4) 6-7 (6) 9-4 (7) 0-8 (6) 9-4 (5) 8-6 (4)	(II) -130.5 (101.1 (6.2 (176.8 (-2.1 (-135.8 (90.8 (3) 4) 6) 4) 5) 3) 5)	

Hydrogen-bond distances (Å) and angles (°); H atoms on calculated positions

	Symmetry				N-H···	
N-H···Cl	operation	N····Cl	N-H	H···Cl	Cl	
N(2')-H(201)····Cl(1)	(1-x, 0.5+y, 1-z)	3.021 (4)	0.98	2.10	157	
N(2")-H(202)Cl(2)	(1-x, 0.5+y, -z)	3.037 (4)	0.98	2.06	175	

(') Indicates molecule I; ('') indicates molecule II.

Buck, Smeets, Kanters & Spek, 1988). The title compound represents a diastereorotamer of the previously published structure of 3-[N-methyl-N-(R)- α methylbenzyl]carbamoyl-1,2,4-trimethylpyridinium iodide (Kanters, van der Steen, Bastiaansen & de Graaf, 1986). The carbonyl groups of these rotamers have an opposite orientation with respect to the pyridinium rings. The carbonyl and N-CH₃ groups are oriented *anti* in the title compound (Fig. 1) and *syn* in the diastereorotamer.

We thank A. J. M. Duisenberg for collecting the X-ray data. The investigations were supported in part (WJJS and ALS) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization of Scientific Research (NWO).

References

- BASTIAANSEN, L. A. M., VERMEULEN, T. J. M., BUCK, H. M., SMEETS, W. J. J., KANTERS, J. A. & SPEK, A. L. (1988). J. Chem. Soc. Chem. Commun. pp. 230–231.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1898.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- KANTERS, J. A., VAN DER STEEN, F. H., BASTIAANSEN, L. A. M. & DE GRAAF, J. A. C. (1986). Acta Cryst. C42, 1248–1251.
- McCANDLISH, L. E., STOUT, G. H. & ANDREWS, L. C. (1975). Acta Cryst. A31, 245-249.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure refinement. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1986). SHELXS86. Program for crystal structure determination. Univ. of Göttingen, Federal Republic of Germany.
- SPEK, A. L. (1982). The EUCLID package. In Computational Crystallography, edited by D. SAYRE, p. 528. Oxford: Clarendon Press.

Acta Cryst. (1988). C44, 2206-2208

Structure of the 1,3-Diaminoguanidinium Salt of 3-Nitro-1,2,4-triazol-5-one, $CH_8N_5^+$.C₂HN₄O₃^{-*}

BY DON T. CROMER,[†] JOHN H. HALL, KIEN-YIN LEE AND ROBERT R. RYAN

Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87545, USA

(Received 25 January 1988; accepted 18 July 1988)

 $= 1.671 \text{ g cm}^{-3}$,

Abstract. $M_r = 219 \cdot 16$, triclinic, $P\overline{1}$, a = 6.735 (2), b = 6.753 (2), c = 9.844 (2) Å, a = 88.29 (2), $\beta = 77.17$ (2), $\gamma = 86.50$ (2)°, V = 435.7 Å³, Z = 2, D_x

* This work was performed under the auspices of the US Department of Energy.

[†] Author to whom correspondence should be addressed.

0108-2701/88/122206-03\$03.00

 1.35 cm^{-1} , F(000) = 228, room temperature, final R = 0.031 for 1088 observed reflections $[I > 2\sigma(I)]$ out of 1516 independent reflections. There is one formula unit in the asymmetric unit. The triazole ring is planar within 0.003 Å and the entire anion is planar within 0.04 Å. The nitro group is rotated 2.9 (2)° out of the

 λ (Mo K α_1) = 0.70927 Å,

 $\mu =$

© 1988 International Union of Crystallography

Table 1. Final least-squares parameters for the C, N and O atoms in the 1,3-diaminoguanidinium salt of 3-nitro-1,2,4-triazol-5-one (DAGNTO) (positional parameters \times 10⁴, equivalent isotropic U \times 10²)

$$U_{\rm eq} = \frac{1}{3} \sum U_{IJ}.$$

x	у	Ζ	$U_{eq}(\dot{A}^2)$			
ion						
5092 (3)	2427 (3)	4150 (2)	2.5 (2)			
2478 (3)	3588 (3)	5521 (2)	2.7 (2)			
2244 (3)	3712 (3)	4176 (2)	3.1 (2)			
3944 (2)	2962 (3)	3275 (1)	3.1 (2)			
4351 (2)	2730 (2)	5506 (1)	2.8 (2)			
7142 (2)	1576 (2)	3646 (2)	3.3 (2)			
1162 (2)	4195 (2)	6576 (1)	3.5 (1)			
7739 (2)	1285 (3)	2398 (1)	5.0 (2)			
8174 (2)	1192 (2)	4508 (1)	4.6 (2)			
1,3-Diaminoguanidinium cation						
4907 (3)	2462 (3)	9065 (2)	2.9 (2)			
8126 (3)	1204 (4)	7895 (2)	4.2 (2)			
6165 (3)	2038 (3)	7865 (2)	3.7 (2)			
5562 (3)	2287 (3)	10233 (2)	3.9 (2)			
2985 (3)	3060 (3)	9084 (2)	4.0 (2)			
1605 (4)	3451 (5)	10350 (2)	5.5 (3)			
	x 5092 (3) 2478 (3) 2244 (3) 3944 (2) 4351 (2) 7142 (2) 7142 (2) 7139 (2) 8174 (2) ninoguanidiniu 4907 (3) 8126 (3) 6165 (3) 5562 (3) 2985 (3) 1605 (4)	xyion 5092 (3)2427 (3)2478 (3)3588 (3)2244 (3)3712 (3)3944 (2)2962 (3)4351 (2)2730 (2)7142 (2)1576 (2)1162 (2)4195 (2)7739 (2)1285 (3)8174 (2)1192 (2)ninoguanidinium cation4907 (3)2462 (3)8126 (3)1204 (4)6165 (3)2038 (3)5562 (3)2287 (3)2985 (3)3060 (3)1605 (4)3451 (5)	xyzion $5092 (3) = 2427 (3) = 4150 (2) = 2478 (3) = 3588 (3) = 5521 (2) = 2244 (3) = 3712 (3) = 4176 (2) = 3944 (2) = 2962 (3) = 3275 (1) = 4351 (2) = 2730 (2) = 5506 (1) = 7142 (2) = 1576 (2) = 3646 (2) = 1162 (2) = 4195 (2) = 6576 (1) = 7739 (2) = 1285 (3) = 2398 (1) = 8174 (2) = 1192 (2) = 4508 (1) = 10000 = 10000 = 100000 = 100000 = 100000 = 100000 = 100000 = 1000000 = 1000000 = 10000000 = 100000000$			

Table 2. Bond lengths (Å) and angles (°) for C, N and O atoms in the 1,3-diaminoguanidinium salt of 3nitro-1,2,4-triazol-5-one (DAGNTO)

C(1) - N(2)	1.309 (2)	N(2)-C(1)-N(3)	118.6 (2)
C(1) - N(3)	1.334 (2)	N(2) - C(1) - N(4)	120.4 (2)
C(1) - N(4)	1.449 (2)	N(3) - C(1) - N(4)	121.0 (2)
C(2) - N(1)	1.367 (2)	N(1)-C(2)-N(3)	107.7 (2)
C(2) - N(3)	1.353 (2)	N(1) - C(2) - O(1)	125.3 (2)
C(2) - O(1)	1.267 (2)	N(3) - C(2) - O(1)	127.0 (2)
N(1) - N(2)	1.363 (2)	C(2)-N(1)-N(2)	111.2 (2)
N(4) - O(2)	1.222 (2)	C(1) - N(2) - N(1)	100-3 (1)
N(4)-O(3)	1.224 (2)	C(1) - N(3) - C(2)	102.2 (1)
C(3) - N(6)	1.320 (2)	C(1)-N(4)-O(2)	118.7 (2)
C(3)-N(7)	1.320 (2)	C(1) - N(4) - O(3)	117.3 (2)
C(3)-N(8)	1.329 (2)	O(2) - N(4) - O(3)	124.0 (2)
N(5)-N(6)	1.410 (2)	N(6)-C(3)-N(7)	120.0 (2)
N(8)-N(9)	1.401 (3)	N(6)-C(3)-N(8)	119.5 (2)
	.,	N(7)-C(3)-N(8)	120.6 (2)
		C(2) N(6) N(5)	1170 (2)

Hydrogen bonds				
•	Symmetry			
	operation	d(X-Y)	$d(\mathbf{H}\cdots \mathbf{Y})$	$\angle X - H \cdots Y$
$X - H \cdots Y$	on Y	(Å)	(Å)	(°)
N(1) - H(1) - O(1)	-x, 1-y, 1-z	2.847 (2)	1.98 (2)	173 (2)
N(5)-H(2)····O(1)	1 + x, y, z	3.019 (3)	2.19 (3)	172 (2)
N(6) - H(4) - N(3)	x, y, z	2.869 (2)	1.98 (2)	170 (2)
$N(7) - H(5) \cdots N(2)$	x, y, 1+z	2.989 (2)	2.17 (2)	155 (2)
N(8)-H(7)····O(1)	x, y, z	3.051 (2)	2.21 (2)	168 (2)

C(3)-N(8)-N(9)

120.4 (2)

ring plane. The remaining H on the anion is clearly in the 1 position. With the exception of the H atoms on the two terminal amino groups, the cation is approximately planar (within 0.09 Å) and coplanar with the anion.

Experimental. Title compound (DAGNTO) prepared by passing a solution of 1,3-diaminoguanidine hydrochloride through a column of Amberlite IRA-400 (OH form) to release the free DAG base and mixing it immediately with an equimolar aqueous solution of 3-nitro-1,2,4-triazol-5-one (NTO). Pale straw-colored crystals for X-ray diffraction crystallized from water. Selected crystal ca $0.20 \times 0.20 \times 0.06$ mm. CAD-4 diffractometer, $\theta - 2\theta$ scan. Scan range (0.8 + $0.34\tan\theta$ °. Scan speed 1.2 to 5.5° min⁻¹. Background first and last 1/6 of scan. Graphite-monochromated Mo Ka radiation. Unit cell, 25 reflections $10 < \theta < 20^{\circ}$. No absorption corrections. Max. $(\sin\theta)/\lambda$ $= 0.540 \text{ Å}^{-1}$. Index range $-7 \le h \le 7$, $-8 \le k \le 8$, $-11 \le l \le 11$, 3032 reflections measured and averaged to yield 1516 unique reflections of which 1088 were observed with $I > 2\sigma(I)$, $R_{int} = 0.013$. Standard reflections 200 and 020 showed no significant variation. Least squares minimized $\sum w(\Delta F)^2$ with $w = [\sigma_c^2(F) + \sigma_c^2(F)]$ $0.015F^2$]⁻¹, $\sigma^2(F)$ based on counting statistics. Structure was solved by RANTAN (Yao Jia-Xing, 1983) which is part of the TEXRAY structure analysis codes.* Scale factor, isotropic type-II extinction parameter [= $2.7 (2) \times 10^{-6} \text{ mm}$] (Larson, 1969), positional parameters, anisotropic thermal parameters for C, N, O, and isotropic thermal parameters for H were refined. Final R = 0.031, wR = 0.030, S = 1.8. Max. Δ/σ = 0.004. Final ΔF Fourier synthesis $-0.18 < \Delta \rho <$ 0.19 e Å⁻³. Scattering factors f (RHF for C, N, O and SDS for H), f', f'' from International Tables for X-ray Crystallography (1974). Calculations on CRAY-1 using the Los Alamos Crystal Structure System developed primarily by A. C. Larson.[†]

Fig. 1 is an ORTEP (Johnson, 1965) drawing of the two ionic groups and shows the atom-numbering

* Molecular Structure Corporation, 3304 Longmire Drive, College Station, TX 77840, USA.

 \dagger Lists of structure factors, anisotropic thermal parameters, H-atom parameters and bond distances and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51255 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. ORTEP (Johnson, 1965) drawing of the asymmetric unit to show atom-numbering scheme. Thermal ellipsoids are 30% probability. H atoms are arbitrarily sized.

Fig. 2. Stereodrawing of the structure. The origin is at the lower right. Hydrogen bonds are dotted.

scheme. Final parameters are given in Table 1. Bond lengths and angles are given in Table 2. The anion H atom and four of the H atoms on the cation are involved in hydrogen bonds. A stereodrawing of the structure is shown in Fig. 2.

Related literature. The anion geometry is virtually identical to that found in the ethylenediammonium salt of NTO (Cromer, Hall, Lee & Ryan, 1988). The cation geometry is close to that found in the 1,2,3-triaminoguanidinium ion (Bracuti, Troup & Extine, 1986) and in the guanidinium ion (Baldwin, Denner, Egan & Markwell, 1986). The H atoms on the central amino group are directed to the lone-pair regions of the terminal amino groups.

NTO is a good, insensitive explosive (Lee & Coburn, 1985) and DAGNTO has about the same impact sensitivity. See Federov & Sheffield (1975) for a description of the impact sensitivity test. It is thought that extensive hydrogen bonding can contribute to impact insensitivity.

See Cromer *et al.* (1988) for further triazole and small explosive molecule references.

References

- BALDWIN, D. A., DENNER, L., EGAN, T. J. & MARKWELL, A. J. (1986). Acta Cryst. C42, 1197–1199.
- BRACUTI, A. J., TROUP, J. M. & EXTINE, M. W. (1986). Acta Cryst. C42, 505-506.
- CROMER, D. T., HALL, J. H., LEE, K.-Y. & RYAN, R. R. (1988). Acta Cryst. C44, 1144-1147.
- FEDEROV, B. T. & SHEFFIELD, O. F. (1975). Encyclopedia of Explosives and Related Items, Vol. 7, p. 137. Picatinny Arsenal, Dover, NJ, USA.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- LARSON, A. C. (1969). Crystallographic Computing, edited by F. R. AHMED, pp. 291–296. Copenhagen: Munksgaard.
- LEE, K. Y. & COBURN, M. D. (1985). 3-Nitro-1,2,4-triazol-5-one, A Less Sensitive Explosive. Report LA-10302-MS. Los Alamos National Laboratory, NM, USA.
- YAO JIA-XING (1983). Acta Cryst. A 39, 35-37.

Acta Cryst. (1988). C44, 2208-2211

Structures of Three N-Methylated 4-Hydroxyproline Derivatives

BY GRAHAM P. JONES, BODAPATI P. NAIDU AND LESLIE G. PALEG

Department of Plant Physiology, Waite Agricultural Research Institute, University of Adelaide, Glen Osmond, South Australia 5064, Australia

AND EDWARD R. T. TIEKINK

Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001, Australia

(Received 25 April 1988; accepted 4 July 1988)

Abstract. (I) $[C_6H_{12}NO_3][C1]$, $M_r = 181.6$, orthorhombic, $P2_12_12_1$, a = 6.099(1), b = 10.651(2), c = 13.692(1) Å, V = 889(2) Å³, Z = 4, $D_m = 1.37(1)$, $D_x = 1.357$ Mg m⁻³, $\lambda = 0.7107$ Å, $\mu = 0.341$ mm⁻¹, F(000) = 384, T = 295(2) K, R = 0.053 for 2027 reflections with $I \ge 2.5(I)$; (II) trans- $[C_7H_{14}NO_3][C1]$, $M_r = 195.6$, orthorhombic, $P2_12_12_1$, a = 6.607(2), b = 11.079(2), c = 12.362(2) Å, V = 905(2) Å³, Z = 4, $D_m = 1.42(1)$, $D_x = 1.436$ Mg m⁻³, $\mu = 0.008, 2701/09/120209, 0.4702, 000$

0.338 mm⁻¹, F(000) = 416, R = 0.035 for 1835 reflections; (III) cis-[C₇H₁₄NO₃][Cl], $M_r = 195.6$, orthorhombic, $P2_12_12_1$, a = 7.031 (2), b = 10.797 (2), c = 12.708 (1) Å, V = 965 (2) Å³, Z = 4, $D_m = 1.34$, $D_x = 1.346$ Mg m⁻³, $\mu = 0.317$ mm⁻¹, F(000) = 416, R = 0.051 for 949 reflections. The crystal structures of (I) N-methyl- and (II) N,N'-dimethyl-4-hydroxy-L-proline and (III) N,N'-dimethyl-4-hydroxy-D-proline have been determined as their hydrochlorides. A trans

0108-2701/88/122208-04\$03.00

\$03.00 © 1988 International Union of Crystallography